Custom

Welcome To My Homepage My Photos My Files Blog About What's New Contact Favorite Links Guest Book Catalog Custom Custom Rich-Text Page Custom Custom 2 Photo

MATHS1

 METHODS OF MULTIPLICATION (TWO DIGIT NUMBER)

For example:

        For testing the result of 54 × 32

           

            54 × 32 → 5432   →    5342

                                               ¯   ¯

                                               ↓    ↓

                                          ↓      15 08 → 1508

                                   34 =>   3 × 4 = 12

                       

                                  52 =>    5 × 2 = 10

  

                                              22 × 10 = 220

                                        1508 + 220 = 1728

                                    54 × 32 = 1728 

Testing of result:-

                        5 + 4   ×    3 + 2    =     1 + 7 + 2 + 8

                                 ↓          ↓                   ↓

                               9   ×     5        =      18

                                –––––––––             

                                       ↓                         ↓

45             =       18

 ↓                          ↓

                                    4 + 5            =       1 + 8

                                        ↓                          ↓ 

                                        9              =           9

                                   L.H.S.           =        R.H.S.

                        

  L.H.S. ó R.H.S.   Result is true.

  ──────────      

Multiplication:

(1)         This multiplication is for those numbers whose  sum of one’s digit =10 and ten’s digit are same

Example – 35 × 35.  98 × 92 etc.

       Working:                             

                                   Ten’s digit × (ten’s digit + 1)                       one’s digit × one’s digit

            35 × 35                       3   ×   4                                                                    5   ×   5

12                                                                                                                              25

                                                                               1225

           

            98 × 92                      9   ×   10                                                           8   ×   2

                                                90                                                                16

                                                                              9016          

 NOTE: 

                  Multiplication of three or four digit number can also be done. If sum of one’s digit = 10

and remaining  digits are same. 

This method is based on addition, in this method numbers are added till a single digit number remains and in the end result of multiplication is being tested.

For Example :  346  *  344   =  34  *  35            6  *  4

1190                                       24

                        345  *  344                 =  119024     

(2)      This  is  for those numbers .Which have there ones postion  digits same and  sum of tenth  postion is10.

For Example :  86  *  26 , 52  *  52

                       For Example :  86  *  26  ( tenth * tenth + ones)    (ones *ones)

                                                           

                                              8 * 2 + 6   = 36

                                                   

 

22                             36

            =  2236  

 

MATHS2

Pascal Triangle

 According to the Pascal (Intelligent, bright, smart, and sharp, mathematician, scientist) triangle there are some interesting facts. From which we can get there is some research left after invention

First we want to know:- From where this triangle came? And which method is behind them?

Let see the triangle:-

1 1

1 2 1

1 3 3 1

1  4  6  4  1

1  5 10 10 5 1

First see how to  write continuously  ? (writing method )

 

 

MATHS4

Powerful Digit “9”

If we research on tables, then we got some information.

(1)  For the table of 2 -

By multiplication of numbers by 2 we got the following numbers which repeat themselves at some point

    2 4 6 8 10 12 14 16 18 20 22

    2 4 6 8   1   3   5   7   9   2   4

                                                                     Repeat

      Numbers 2 4 6 8 repeated after 9. We write it like this

      2 4 6 8 1 3 5 7 9 2 4 if we add these numbers

     

      2 + 4 + 6 + 8 +1 + 3 + 5 + 7 + 9   = 45   = 4 + 5 = 9

(2)  For the table of 3 -

                        3 6 9 12 15 18 21 24 27 30

                        3 6 9  3   6   9   3   6   9   3

                                   

During adding we got (3 6 9) which repeat themselves.

Write it like this -

     3 + 6 + 9 = 18 = 1 + 8 = 9

(3)  For the table of 4 -

                        4 8 12 16 20 24 28 32 36 40 44

                        4 8  3   7   2   6   1   5   9   4   8

                                                                    Repeat

4 + 8 + 3 +7 +2 + 6 + 1 + 5 + 9 = 45 = 4 + 5 = 9

(4)  For the table of 5 -

                        5 10 15 20 25 30 35 40 45 50 55 60

                        5  1   6   2   7   3   8   4   9   5   1   6

                                                                          Repeat

5 + 1 + 6 + 2 + 7 + 3 + 8 + 4 + 9 = 45 = 4 + 5 = 9

  

(5) For the table of 6 -

                        6 12 18 24 30 36 42 48 54 60

        6   3   9   6    3    9    6    3    9    6

        6  +  3  +  9          = 45   =  4  +  5 =  9

(6)  For  7  table: -

7        14  21  28  35  42  49  56  63  70  77

7     5    3    1    8    6    4    2    9    7    5

7 + 5 + 3 +1 + 8 + 6 + 4 + 2 + 9     = 45    = 4   +  5  =  9

(7)    For  8  table :-

8        16  24  32  40  48  56  64  72  80

8     7    6    5     4   3    2    1    9    8

8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 + 9    = 45    =  4  +  5  = 9

(8)    For  9  table  :-

9     18   24  36  45  54  63  72  81  90

9      9     9    9    9    9    9    9    9    9 

9        =    9

Note  : 

            By studying this we get knowledge about two things.

(1)              In a  specific table repeating of a number or some  numbers.

(2)              Number 9 in each equation and in the end too.

 

Insert Another Sub Header Here

 METHODS OF MULTIPLICATION (TWO DIGIT NUMBER)

     (1).     Suppose you want to multiply 25 AND 32 –

                first write 25 × 32 like this –

                after that write it like this - (2352)

    352 = 2 × 3 = 6                                        (ten's digit × hundred's digit)

                            5 × 2 = 10

                                     = 610

                10 (3 × 5 + 2 × 2) = 10 (15 + 4) = 190             (one’s digit × thousand’s digit ×10)

                                             = 610 + 190 = 800

     (2).   

  a.   For multiplication of 25 × 32, we do :-

2 5

3 2

                                    ──

                                    4 0

                                                            (Multiplication of one’s digit)

                                 0 1

                                 6 5

                                                            (Multiplication of ten’s digit)

                              0 1

                            ──────

                                 8 0 0

                            ──────   

           

    b.   For multiplication of 48 × 35, we do :-

                                    4 8

                                       3 5

                                    ──

                                    0 0

                                       

                                 2 4

                                 2 4

                                   

 1 2

─────

 1 6 8 0

─────

Methods for testing the result of multiplication of different number of digits :

 

 

Insert Another Sub Header Here

Insert descriptive text which supports the above header. Insert descriptive text which supports the above header.Insert descriptive text which supports the above header. Insert descriptive text which supports the above header.

MATHS3

“PASCAL TRIANGLE”

                                                                  

Pascal was not only the scientist, but also great mathematician . His efforts towards science and math were countless; Pascal triangle is a triangle upon which still some works has to done. I had also done some work on Pascal triangle; there came some points that made his invention           . I studied some more on Pascal triangle then there some points came in front of me that i want to share those points with you.

Firstly we going to learn that, How this triangle is build?

If we add numbers i.e.(1+1=2) (1+2+1=4) (1+3+3+1=8) (1+4+6+4+1=16) we get (2, 4, 8, 16) ,which are even numbers.

Further reading tells, 121 is square of 11, 1331 – 11³, 14641 – (11²)², but for the solution of 11 raise to the power 5, new methods has been developed.

By using this method, we can solve any power of 11.   This triangle can easily be remembered. Just remember 11, in the next number 1-1 is at the both end and just add the middle number. For example 11, 1, 2, 1, 1, (1+2), (2+1), 1 => 1, 3, 3, 1, 1, (1+3), (3+3), (3+1), 1 => 1, 4, 6, 4, 1.

                                                     Figure of Pascal Triangle

11

2

2

1

2

1

4

4

1

3

3

1

8

8

1

4

6

4

1

16

7

1

5

10

10

5

1

32

5

1

6

15

20

15

6

1

64

1

1

7

21

35

35

21

7

1

128

2

1

8

28

56

70

56

28

8

1

256

4

1

9

36

84

126

126

84

36

9

1

512

8

1

10

45

120

210

252

210

120

45

10

1

1024

7

1

11

55

165

330

462

462

330

165

55

11

1

2048

5

1

12

66

220

495

792

924

792

495

220

66

12

1

4096

1

11

                                                                                        11

8192

2

11²

                                                                                       121

16384

4

11³

                                                                                      1331

32768

8

11

                                                                                     14641

65536

7

11

                                                                                    161051

131072

5

11

                                                                                    1771561

262144

1

11

                                                                                   19487171

524288

2

11

                                                                                  214358881

1048576

4

11

                                                                                  2357947691

2097152

8

11

                                                                                 25937424601

4194304

7

11

                                                                                 2.85312E+11

8388608

5

11

                                                                                 3.13843E+12

16777216

1

33554432

2

67108864

4

134217728

8

268435456

7

536870912

5

1073741824

1

2147483648

2

4294967296

4

8589934592

8

17179869184

7

34359736368

5

                          


 

115 ->  1     5      10       10     5      1     ->  which is a form pascal’s triangle.

To write  this in 115  from we have to use  this format .

                                                          100000

                                                            50000

                                                            10000

                                                              1000

                                                                  50

                                                                    1   

One is at sixth place .we will add five zero after it . Five is at fifth place we will add four  zero .Like this we keep on decreasing number of zero…….

Add at the end we will find out sum of all values and that will be the value of  (115). 

                                                          161051

Is value of 115

Like this we will find out value of  (1110) .

First  through  pascal’s triangle we get :

1        10  45  120  210  252  210  120  45  10  1 form . To

find out value we will use this format.

                                                10000000000

                                                10000000000

                                                  4500000000

                                                  1200000000

                                                    210000000

                                                      25200000

                                                        2100000

                                                          120000

                                                             4500

                                                                 10

                                                                  1

Add  ten  zero after 1.

Add nine zero after 10.

After 45 add 8 zero.

After 120 add 7 zero.

After 210 add 6 zero.

After 252 add 5 zero.

After 210 add 4 zero.

After 120 add 3 zero.

After 45 add 2 zero.

Add  1 zero after 10.

At the end add1.

Thisis 1110 value                    25937424601

Insert Another Sub Header Here

Insert descriptive text which supports the above header. Insert descriptive text which supports the above header.Insert descriptive text which supports the above header. Insert descriptive text which supports the above header.